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Abstract. For a homogeneous quantum network of N subsystems with n levels each we consider separable
generalized Werner states. A generalized Werner state is defined as a mixture of the totally mixed state
and an arbitrary pure state |ψ〉: ρ̂Werner = (1 − ε)1̂ + ε|ψ〉〈ψ| with a mixture coefficient ε. For this density
operator ρ̂Werner to be separable, ε will have an upper bound ε sep ≤ 1. Below this bound one should alter-
natively be able to reproduce ρ̂Werner by a mixture of entirely separable input-states. For this purpose we
introduce a set of modules, each contributing elementary coherence properties with respect to a generalized
coherence vector. Based on these there exists a general step-by-step mixing process for any εmix ≤ εmax.
For |ψ〉 being a cat-state it is possible to define an optimal process, which produces states right up to the
separability boundary (εmax = ε sep).

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities,
GHZ states, etc.) – 03.67.-a Quantum information – 03.65.-w Quantum mechanics

1 Introduction

In the last couple of years our understanding of the
quantum mechanical world has considerably been im-
proved. Concepts like “teleportation” [1,2] “quantum
cryptography” [1,3,4] and “quantum computation” [1,5]
are well-known, not only in professional circles. One
of the most astonishing features of quantum mechan-
ics is entanglement or inseparability originally mentioned
by Schrödinger (cf. [6,7]). Multipartite entanglement
(cf. [8,9]) is a property of quantum networks, i.e. systems
consisting of several subsystems µ with nµ energy levels
each (µ = 1, ..., N). Measurements on entangled subsys-
tems lead to correlations, which cannot be described by
a classical local realistic theory [7,10]. It has been shown
recently that speed-up in pure state quantum computa-
tion requires multi-partite entanglement [11]. Quantum
networks could be found either in an entangled or a sepa-
rable (“classical”) state, but the boundary between these
states is far from being understood completely.

To discriminate between separable and entangled
states it would be desirable to have universally valid sep-
arability criteria. For pure states such a criterion is avail-
able: a pure network state is separable if all subsystems are
locally in pure states, too, or if it does not violate a Bell
inequality [12,13]. Up to now there is no generally valid
operational criterion for the separability in case of mixed
states, but a large variety of either necessary or sufficient
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conditions. A very important necessary condition is the
Peres criterion (positive-partial-transpose-criterion) [14].
This criterion is sufficient, too, for a network consisting
of two 2-level systems or a 2- and a 3-level-system [15].
Pittenger and Rubin [16] have shown that the Peres cri-
terion is also sufficient for larger networks and a special
state class, the so-called Werner states [17]. In the neigh-
borhood of the totally mixed state, all states should be
separable [18,19]. For such mixed states it is possible to
use the sufficient criterion by Braunstein et al. [20]. An-
other interesting sufficient criterion valid for a larger part
of the separable region is the recursive demixing procedure
by Otte [21], which is not only able to proof separability
of a mixed state but even to produce the decomposition
into a convex combination of product states. (For further
information concerning separability see [22–26].)

Recently some doubts have been raised about the
significance of entanglement, mainly in relation with
NMR quantum computation [20,27], where often highly
mixed quantum states are used, for example the Werner
states [17] with small ε. Here we want to consider a gen-
eralization of the already mentioned Werner states. These
states are mixtures out of the “totally mixed state” and
an arbitrary pure state weighted by a mixture coefficient ε
(in the original Werner state the pure state is the EPR
state). If the pure state was entangled, the correspond-
ing generalized Werner state can be entangled or not,
depending on the mixture coefficient ε. Special ensemble
experiments (for example EPR measurements) based on
such a separable Werner state would lead to the same
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interference pattern as an experiment with the entangled
pure EPR state, though scaled down by ε.

A separable generalized Werner state should alterna-
tively be producible by mixing separable states only (i.e.
convex combination of product states). Such a decompo-
sition into a convex combination of separable states is
neither unique nor easily generated. To produce such a
decomposition, we introduce a set of separable states, so-
called modules, with a very special type of “classical” cor-
relation (minimum number of elementary correlations).
With this set of states it is then possible to mix every
generalized Werner state, with a rather small ε. While an
optimal algorithm would produce a separable generalized
Werner state right up to the separability boundary, this
will not be the case here, in general. To approach the
boundary, specially adapted building blocks are needed,
as will be shown for the original Werner states.

One may say that this mixture simulates in a
“classical” way all the down-scaled correlations of the re-
spective pure state, including its entanglement. “Classi-
cal”, because mixing processes are not able to produce
“real” entanglement, thus all these states definitely remain
separable. There have been other concepts of classical en-
tanglement simulation: one version aims at the simula-
tion of individual measurement sequences on N entangled
spins [28,29] by means of additional classical resources
(e.g. shared random bits). It turns out that number of bits
of communication needed grows exponentially with N . A
second version deals with classical wave simulation [30],
again with exponential scaling. Thus, classical simulation
of quantum mechanical behavior is often costly [31]: also
we find this cost to increase exponentially with the num-
ber of subsystems N .

2 Operator representations

As is well-known, any density-operator can be expanded
in terms of a set of orthonormal basis-operators for the
Liouville space. For a quantum mechanical system with
n levels there are various possible sets of basis-operators
for its n2-dimensional Liouville space L. Here we use an
unitary operator basis [32,33] as defined by the set

Ûa,b :=
n−1∑
p=0

ωbp|p+ a〉〈p| with ω = e
2πi
n , (1)

where underlining a term indicates the modulo function
x = (x mod n) and with indices a, b = 0, ..., n − 1. The
identity operator is included as Û0,0. One can merge the
two indices a and b into one single index c by the relation:

c = na+ b with c = 0, ..., n2 − 1. (2)

Note that for n not being prime some of the unitary opera-
tors Ûa,b can additionally be Hermitian. For n = 2 all the
unitary operators are directly related to the well-known
Hermitian Pauli-operators σ̂i, i = 0, x, y, z:

Û0,0 = σ̂0, Û0,1 = σ̂z, Û1,0 = σ̂x, Û1,1 = i σ̂y. (3)

Forming a complete orthogonal basis in Liouville space
with Tr

{
Ûa,b Û

†
a′,b′

}
= n δaa′δbb′ , any operator Â acting

on the system can be expanded as

Â =
1
n

n2−1∑
c=0

uc(Â) Ûc, (4)

where uc = Tr
{
Û †

c Â
}

. Applying this expansion to the
density operator ρ̂ and leaving aside the term u0 = 1
the (n2 − 1), in general, complex values uc form the
so-called coherence vector, which describes all state prop-
erties of the system under investigation.

Consider now a (N,n) homogeneous quantum network,
i.e. a set of N subsystems, n levels each. As a basis in
the n2N -dimensional Liouville space one can use now the
product operators

Ĉ{a,b} =
N⊗

µ=1

Ûaµ,bµ , (5)

a and b are index vectors of N components each, contain-
ing all subsystem indices aµ and bµ. Ĉ{0,0} is the iden-
tity operator of the complete Liouville space 1̂(nN). As
mentioned above it is again possible to form a new index
vector c to represent a pair of vectors {a,b}. Every com-
ponent cµ of the vector c can be evaluated by equation (2).
All adjoint operators Ĉ†

{a,b} are members of the complete
orthogonal set, via:

Ĉ†
{a,b} = ωa·bĈ{n−a,n−b} with n = {n, ..., n}. (6)

For some special index vectors a, b and n the unitary
product operator will also be Hermitian, in particular, if
all its local operators have this property. All product op-
erators Ĉ{a,b} are trace free (for c �= 0) and fulfill the
orthogonality relation

Tr
{
Ĉ{a,b}Ĉ

†
{a′,b′}

}
= nNδa,a′δb,b′. (7)

Therefore the set of operators Ĉc form a complete orthog-
onal set in the Liouville space of the (N,n) network. Any
operator can be expanded in terms of these, in particular

ρ̂ =
1
nN

(
1̂ +

∑
c�=0

uc(ρ̂) Ĉc

)
. (8)

All elements uc (c �= 0) obey |uc(ρ)| ≤ 1; they form again
the coherence vector of the whole system,

uc(ρ̂) = Tr
{
Ĉ†

c ρ̂
}
. (9)

In general, the vector components are complex; however,
hermiticity of ρ̂ implies

u∗{a,b} = ω−a·bu{n−a,n−b} (10)
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leaving only n2N − 1 independent real parameters. The
vector uc contains not only local information about the
individual subsystems but also correlations between any
number of different subsystems (see [32]). The coherence
vector length is given by

L2 =
∑
c�=0

|uc(ρ)|2 = nN Tr
{
ρ2

} − 1 ≥ 0. (11)

For a mixed state, L2 < nN − 1.
Now, let ρ̂(j) be a set of, in general, non-pure but sepa-

rable density operators. Then, the non-orthogonal decom-
position of a mixed state into states ρ̂(j),

ρ̂ =
1∑

j K(j)

∑
j

K(j) ρ̂(j) (12)

with uc(ρ̂) =
∑

j K(j)uc(ρ̂(j)) is also separable. For a
given set, however, it is not guaranteed that all separa-
ble states can be represented in this way. The decompo-
sition (12) has to be seen in contrast to the orthogonal
decomposition into unitary operators (8). We are looking
for basis operators ρ̂(j), which, in addition of being sep-
arable, have a coherence vector with the minimum num-
ber of non-zero entries. This is desirable, as each mixing
coefficient will then control very few different vector com-
ponents only, allowing a modular construction of almost
arbitrary mixed-state coherence vectors of small length.

3 Separable state modules

In a (N,n) network a possible basis of non-orthogonal sep-
arable basis operators ρ̂(j) are the modules defined by the
following expansion in terms of product operators (c �= 0)

ρ̂
(N)
mod(c, uc) =

1
nN

(
1̂ + ucĈc + u∗cĈ

†
c

)
. (13)

All these operators represent quantum mechanical states
for Ξ = |uc| ≤ 1/2 (otherwise the modules may violate
positivity), but with arbitrary argument or phase φ. As
the product operators are trace-less, the trace of these
modules is one. These modules contain the minimal num-
ber of non-zero coherence vector entries: one, if the re-
spective product operators are Hermitian, two otherwise.
In particular for n = 2 the coherence vectors of all the
modules have only one non-zero entry. The purity Pmod is
according to equation (11) given by

Pmod =
{
ρ̂(N)

mod(c, uc)2
}

=
1
nN

(
2Ξ2 + 1

)
. (14)

The modules are thus mixed, Pmod < 1. For a maximal dis-
tance to the totally mixed state it is vital to chooseΞ max-
imal, as will be assumed to have been done in the following
unless specified otherwise (ρ̂mod(c, uc) = ρ̂mod(c, φ)).

It is remarkable that all these modules are separable;
this can be shown by complete induction: consider a mod-
ule for N subsystems with n levels each and a special

phase φ+ (2π/n)k (with k integer),

ρ̂
(N)
mod

(
c, φ+

2π
n
k

)
. (15)

Suppose that this module is separable. For net-
works with only one subsystem (N = 1), modules
ρ̂(1)

mod (c, φ− (2π/n)k) are trivially separable. We then
prove that the following separable state

ρ̂ =
1
n

n−1∑
k=0

ρ̂
(N)
mod

(
c, φ+

2π
n
k

)
⊗ ρ̂

(1)
mod

(
cN+1, φ− 2π

n
k

)

(16)
is equivalent to the module ρ̂(N+1)

mod ({c, cN+1}, 2φ) in a sys-
tem of N + 1 subsystems. The state represented by the
density operator (16) is separable, because it consists of a
convex combination of, by induction hypothesis, separable
states. To show the equivalence we put equation (13) into
equation (16) and collect terms with phases e

2πi
n k. Sums

over these phases from k = 0, ... n− 1 are zero. Only two
terms remain, which can be identified with those of the re-
spective module ρ̂(N+1)

mod ({c, cN+1}, 2φ). This completes the
proof from step N to N + 1.

The modules as separable states can be generated by a
mixture of product states. To describe this mixing here in
detail, however, would go beyond the scope of this article.

In general, it is very hard to decide whether an ad hoc
coherence vector (for a (N,n) network) corresponds to an
allowed state in Hilbert space. To the best of our knowl-
edge the geometrical shape generated by the set of all
pure-state coherence vectors is unknown; it is anything
but a simple hyper sphere (the Bloch-sphere, applicable
to the 2-dimensional Hilbert space, is an exception).

However, restrictions on the vector components fade
away as we decrease the coherence-vector length. With
mixtures based on the separable modules it is possi-
ble to construct any coherence vector uc of down scaled
length L2. So, for N and n finite any direction of this vec-
tor is allowed, if only its length is taken to be small enough
(though finite). The set of accessible states is given by

ρ̂mix =
1

Nmod

∑
c�=0

K(c) ρ̂(N)
mod (c, φc) (17)

with the mixture coefficients K(c) ≥ 0 constrained by
∑
c�=0

K(c) = Nmod (18)

and some fixed phase φc for each module. By construction
all these states ρ̂mix are separable.

4 Special mixed states

We will focus now on special 1-parameter classes of mixed
quantum states, the generalized Werner states. These
states are mixtures out of the totally mixed state (1/nN)1̂
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(with L2 = 0) and an arbitrary pure state ρ̂pure = |ψ〉〈ψ|
weighted by a mixture coefficient 0 ≤ ε ≤ 1:

ρ̂Werner =
1
nN

(1 − ε)1̂ + ερ̂pure. (19)

It is possible to expand the generalized Werner state in
terms of product operators (Eq. (5)). Applying the ex-
pansion (8) to the pure state in the definition of the gen-
eralized Werner state (19) one finds

ρ̂Werner =
1
nN

(
1̂ + ε

∑
c�=0

uc(ρ̂pure) Ĉc

)
. (20)

Compared with the product operator expansion of the
pure state ρ̂pure, the generalized Werner state has the co-
herence vector of the pure state scaled down by ε; one may
say that all properties have become “pale”. For this den-
sity operator ρ̂Werner to be separable, ε will have an upper
bound ε sep ≤ 1, depending on the pure state considered.

If the pure state ρ̂pure is taken to be the cat state

|ψ〉 = |cat〉 =
1√
n

n−1∑
i=0

|i, ..., i〉, (21)

one gets the original (cat-) Werner state [17]. For cat states
the coherence vector is easily evaluated with the aid of
equation (9). We find

u{a,b} =

{
1 a = {a, ..., a}, ∑N

µ=1 bµ = 0

0 else
(22)

where the underlining, again, indicates the modulo func-
tion. A short-hand notation of equation (22) is

u{{a,...,a},b} = δ(∑ N
µ=1 bµ = 0), (23)

where it is understood that the element of the vector is
one if the index condition in brackets is fulfilled, else zero.
Note that

∑N
µ=1 bµ = 0 is fulfilled for exactly nN − 1

different vectors b.

5 Mixing generalized Werner states

In the following we develop a mixing process which is
able to reproduce an arbitrary generalized Werner state
for εmix ≤ εmax.

To carry out a mixing process with the aid of the mod-
ules we have to analyze the coherence vector of the state of
interest. Because we want to produce a generalized Werner
state it is sufficient to investigate the coherence vector of
the pure state ρ̂pure (see Eq. (20)). The coherence vector
entry uc(ρ̂pure) is a complex number and hence we set

uc(ρ̂pure) = K(c) eiφ(c) with 1 > K(c) ≥ 0. (24)

The phase φ(c) of this coherence vector entry uc(ρ̂pure)
tells us, which module phase we should use. Therefore we
must provide the modules

ρ̂
(N)
mod (c, φ(c)) . (25)

The modulus K(c) of the coherence vector entry uc(ρ̂pure)
corresponds to these mixing coefficients.

Now it is possible to mix all modules with correctly
adjusted phases and proper mixing coefficients,

ρ̂mix =
1

Nmod

∑
c�=0

K(c) ρ̂(N)
mod (c, φ(c)) (26)

with the real normalization Nmod (see Eq. (18)). If we put
our definition of modules (13) into the mixture (Eq. (26)),
we get:

ρ̂mix =
1
nN

(
1̂ +

Ξ

Nmod

∑
c�=0

(
K(c)eiφ(c)Ĉc

+K(c)e−iφ(c)Ĉ†
c

))
. (27)

Based on equation (24) this can be recast into

ρ̂mix =
1
nN

(
1̂ +

Ξ

Nmod

∑
c�=0

(
uc(ρ̂pure)Ĉc + u∗c(ρ̂pure)Ĉ†

c

))
.

(28)
Obviously the sum over uc(ρ̂pure)Ĉc is the product opera-
tor expansion of our pure state. With equations (6, 10), we
are able to transform the second sum of the mixture (28)
into a sum over product operators instead of a sum over
adjoint product operators. This sum is equivalent to the
first sum because it runs over all indices c. Therefore we
get the expansion:

ρ̂mix =
1
nN

(
1̂ +

2Ξ
Nmod

∑
c�=0

uc(ρ̂pure)Ĉc

)
. (29)

This mixed state is separable, because it is constructed
by a convex combination of separable quantum states, the
modules. For an example see Appendix A or Figure 1.

We finally compare the mixed state (29) with the gen-
eralized Werner state (see Eq. (20)) to extract the mixture
coefficient

εmix =
2Ξ
Nmod

≤ εmax. (30)

If we are able to provide modules with the maximal pos-
sible Ξ = 1/2, we get εmax = 1/Nmod. Obviously, it
is possible to reach now every generalized Werner state
with ε ≤ εmax by mixing. Because the mixed state is known
to be separable one may say that this mixing process is a
sufficient criterion for separability of generalized Werner
states.

Note, that for all systems with n prime we may sort
the basis operators Ĉc into pairs of operators and their
adjuncts. Then it is possible to halve the number of mod-
ules needed (see Fig. 1) and thus improve εmax by a factor
of two. Also in other cases it may be possible to improve
the present mixing process, but not in general.
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uc(ρ̂cat)
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(2)
mod({1, 2})
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mod({2, 1})
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mod({3, 3})
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ρ̂
(2)
mod({7, 8})

ρ̂
(2)
mod({8, 7})

uc : c = {c1, c2}

εmax = 1
8

Fig. 1. Mixing as a pattern composition: the non-zero components of the target vector uc for an original Werner state (N =
2, n = 3) are shown in the first line. This vector can be reconstructed using 8 modules (Ξ = 1/2), leading to εmax = 1/8. Note that
in the present case the module pattern are pairwise identical, so that 4 modules suffice, allowing to improve εmax = ε sep = 1/4.

6 Separability boundary

For the original Werner state Pittenger and Rubin have
found a criterion for full separability [16]: a Werner states
is separable if and only if

ε ≤ ε(cat)sep =
1

nN−1 + 1
· (31)

Note that this is only valid if the pure state corresponds
to the cat state. For the generalized Werner states such
a separability criterion has not been found yet. There are
some special cases, e.g. if the pure state is a product state,
where the generalized Werner state is separable for arbi-
trary ε. In the special case of original Werner states we
have nN − 1 mixture coefficients K = 1 (see Eqs. (22, 24)
and thus, according to equation (18), Nmod = nN − 1.
Equation (30) then implies

εmax =
1

nN − 1
< ε(cat)sep . (32)

It is obvious that this εmax is usually far below the separa-
bility boundary ε(cat)sep of equation (31). But for the special
case of original Werner states and n prime, we have been

able to produce states directly at the Pittenger boundary.
For this purpose we need a different type of basis states,
which are better adapted to this special case, which we
will call packages. Packages are defined here, for n prime,
by the product operator expansion:

ρ̂
(N)
pack(c) =

1
nN

(
1̂ +

n−1∑
σ=1

Ĉσ
c

)
. (33)

Here, we have introduced the power of a product opera-
tor Ĉ σ

{a,b}, which is another operator out of the set propor-

tional to Ĉ{σa,σb}. All these operators commute and their
common eigenstates are product states; (33) can thus be
written as a mixture of product states and is therefore
separable. The purity is Ppack = 1/nN−1.

Which package one needs for the mixture, can be ex-
tracted again from the coherence vector, here given by
equation (22). To reach states directly at the separability
boundary we need only packages whose index vectors ful-
fill the conditions a = {1, ..., 1} and

∑N
µ=1 bµ = 0. We mix

these Npack packages with mixture coefficients K(c) = 1:

ρ̂
(N)
a=1 =

1
Npack

∑
b

ρ̂
(N)
pack({a,b}) δ(∑ N

µ=1 bµ = 0) (34)
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where a = {1, ..., 1} and with the δ-function from equa-
tion (23). Furthermore, we need another special separable
state:

ρ̂(N)
spec =

1
n

n−1∑
i=0

|i, ..., i〉〈i, ..., i|. (35)

Mixture of all selected states with equal weights and cor-
rect normalization leads to the density operator:

ρ̂mix =
1

Npack + 1

(
Npack ρ̂

(N)
a=1 + ρ̂(N)

spec

)
. (36)

Because here all mixture coefficients are equal to one
Npack = nN−1 is the number of used packages. If the pack-
ages (33) are inserted into equation (36) and ρ̂(N)

spec is ex-
panded in terms of product operators, one can get finally
the expansion in terms of product operators:

ρ̂mix =
1
nN

(
1̂ +

1
nN−1 + 1

n−1∑
a=0

∑
b

Ĉ{a,b}δ(
∑ N

µ=1 bµ = 0)
)
,

(37)
which is equivalent to the product operator expansion of
the original Werner state, with

εmax = ε(cat)sep =
1

nN−1 + 1
· (38)

Note that this process only works for n prime. This follows
from the special operator basis in this case and underlines
the peculiarities of finite groups of prime order (cf. [34]).

7 Conclusions

We have based our considerations on the (in general
complex) coherence-vector description applicable to any
quantum state of a finite composite system. The vector
components comprise the various coherence properties of
the state; their real and imaginary parts may be said to
define a one-dimensional discrete pattern. This pattern
uniquely specifies the respective state.

Mixed states are characterized by a vector
length L smaller than the maximum reached for pure
states. We have introduced a concrete mixing procedure,
in which the target coherence vector is reconstructed
step-by-step via the combination of elementary pattern
provided by our modules.

This concept has been applied to the original and
generalized Werner states (1-parameter-families of mixed
states). The geometrical interpretation of mixing in terms
of pattern combinations allows for an intuitive and simple
explanation of the “classical simulation of entanglement”:
as any vector component is available based on separable
module states, one can compose any pattern one likes,
including those of truly entangled states, though with re-
duced vector length. As might have been expected, these
classical simulations are exponentially costly, taking as a
measure of cost the number of different modules needed

for the mixture: there are n2N − 1 different product oper-
ators and thus the same number of different modules. If
we additionally account for the hermiticity of all density
operators, it is necessary to mix (n2N − 1)/2 modules, in
the worst case. This number grows exponentially with the
number of subsystems.

However, this mixture process is not optimal, i.e. it is,
in general, not possible to reach mixed states directly at
the boundary of separability. This is basically due to the
fact that too many modules are needed (which already
have low purity), implying a too short coherence vector
length. Specially adapted modules have been shown to be
needed to reach this goal for the original Werner states.
To find such optimized modules for other state classes (co-
herence vectors with other target patterns) will be quite
challenging. One should note that having found the set of
optimum modules valid for any mixed target state would
be equivalent to a complete solution of the general sepa-
rability problem!

We thank P. Borowski, J. Gemmer, M. Hartmann, H. Schmidt,
M. Stollsteimer, and F. Tonner for fruitful discussions.

Appendix A: Example of a modular mixture
for a (N = 2, n = 3) network

Based on the cat state |ψ〉 = (|00〉 + |11〉 + |22〉)/√3, we
consider the Werner state

ρ̂Werner =
1
9
(1 − ε)1̂ + ε|ψ〉〈ψ|. (A.1)

From its expansion in terms of product operators (c =
{c1, c2}):

ρ̂Werner =
1
9

(
1̂ + ε

(
Ĉ{1,2} + Ĉ{2,1} + Ĉ{3,3} + Ĉ{4,5}

+ Ĉ{5,4} + Ĉ{6,6} + Ĉ{7,8} + Ĉ{8,7}

))
, (A.2)

we read off the non-zero coherence vector entries (cf.
Eq. (8)):

u{1,2} = ε, u{2,1} = ε, u{3,3} = ε, u{4,5} = ε,

u{5,4} = ε, u{6,6} = ε, u{7,8} = ε, u{8,7} = ε. (A.3)

This coherence vector can now be reproduced using our
modules or packages.

The phases and mixing coefficients for the mixing of
the general modules are (note that c = {c1, c2} ≡ {a,b} =
{{a1, a2}, {b1, b2}}) cf. equation (22):

Φ(c) = 0, K(c) =

{
1 a = {a, a}, b1 + b2 = 0
0 else.

(A.4)
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The number of modules needed is: Nmod = 32 − 1 = 8 (see
Eq. (18)). The resulting mixtures reads:

ρ̂mix =
1

Nmod

∑
c�=0

K(c)ρ̂(2)
mod (c, 0)

ρ̂mix =
1
9

(
1̂ +

2Ξ
8

(
Ĉ{1,2} + Ĉ{2,1} + Ĉ{3,3} + Ĉ{4,5}

+ Ĉ{5,4} + Ĉ{6,6} + Ĉ{7,8} + Ĉ{8,7}

))
(A.5)

with εmix = Ξ
4 . This mixing process of general modules

for reaching the original Werner state for a (2, 3) network
is illustrated in Figure 1.
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